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Inside Cisinski [1] :

3 - The homotopy theory of ∞-categories

3.1 - Kan �brations and the Kan-Quillen model

structure
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Goal : construct the Kan-Quillen model category structure, encoding the
homotopy theory of Kan complexes, and give a more precise description
of this model structure.
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Recall ∆1 = Hom(−, [1]).
∆1 × (−) is an exact cylinder, ie an endofunctor of the category of
simplicial sets, with (∂1, ∂2) : 1

∐
1→ ∆1 × (−) and σ : ∆1 × (−)→ 1,

satisfying some properties.

De�nition 3.1.1.

An anodyne extension is an element of the smallest class of
∆1 × (−)-anodyne maps.
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See Example 2.4.13 for the construction of this smallest class, here for
I = ∆1 × (−) and S = ∅ :

1 - choose a cellular model M;

2 - set :

Λ0
I (S ,M) = S ∪ {I ⊗ K ∪ {ε} ⊗ L→ I ⊗ L|K → L ∈ M, ε = 0, 1};

3 - set by induction on n :

Λn+1
I (S ,M) = {I ⊗ K ∪ ∂I ⊗ L→ I ⊗ L|K → L ∈ Λn

I (S ,M)};

4 - set :
ΛI (S ,M) = ∪n≥0Λn

I (S ,M);

5 - set :
An(S) = l(r(ΛI (S ,M)))
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Proposition 3.1.2 (Gabriel and Zisman).

The following three classes of morphisms of simplicial sets are equal:
(a) the class of anodyne extensions;
(b) the smallest saturated class of maps containing inclusions of the form

∆1 × ∂∆n ∪ {ε} ×∆n → ∆1 ×∆n
for n ≥ 0 and ε = 0, 1;

(c) the smallest saturated class containing inclusions of the form

Λn
k → ∆n

for n ≥ 1 and 0 ≤ k ≤ n.
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Proof of (a) = (b).

To build An(S) using our algorithm, take M = {∂∆n → ∆n, n ≥ 0}.
Goal : prove l(r(ΛI (S ,M))) = l(r(Λ0

I (S ,M))). We already have the the
reverse inclusion because ΛI (S ,M) ⊃ Λ0

I (S ,M).
Let's show ΛI (S ,M) ⊂ l(r(Λ0

I (S ,M))). Actually, su�cient to prove that
for any monomorphism K → L and ε = 0, 1, the inclusion :

∆1 × K ∪ {ε} × L→ ∆1 × L

belongs to l(r(Λ0
I (S ,M))). This is true for all the maps of M. And M is

a cellular model, and the above property is stable under saturation, so it
is true for all monomorphisms.
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Lemma 3.1.3.

The following two classes of morphisms are equal:
(a) the smallest saturated class of maps containing inclusions of the form

∆1 × ∂∆n ∪ {1} ×∆n → ∆1 ×∆n
for n ≥ 0 and ε = 0, 1;

(b) the smallest saturated class containing inclusions of the form

Λn
k → ∆n

for n ≥ 1 and 0 < k ≤ n.
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Corollary 3.1.4.

For any anodyne extension K → L and any monomorphism U → V , the
induced inclusion K × V ∪ L× U → L× V is an anodyne extension.
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De�nition 3.1.5.

A Kan �bration is a morphism of simplicial sets with the right lifting
property with respect to the inclusions of the form Λn

k → ∆n, for n ≥ 1
and 0 ≤ k ≤ n.
A Kan complex is a simplicial set X such that the morphism from X to
the �nal simplicial set is a Kan �bration.

Ie :
Λn
k X

∆n Y
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Corollary 3.1.6.

For any monomorphism i : U → V and for any Kan �bration p : X → Y ,
the canonical map

(i∗, p∗) : Hom(V ,X )→ Hom(U,X )×Hom(U,Y ) Hom(V ,Y )

is a Kan �bration.

Corollary 3.1.7.

For any anodyne extension i : K → L and for any Kan �bration
p : X → Y , the canonical map

(i∗, p∗) : Hom(L,X )→ Hom(K ,X )×Hom(L,Y ) Hom(K ,Y )

is a trivial �bration.
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Theorem 3.1.8.

There is a unique model category structure on the category of simplicial
sets whose class of co�brations is the class of monomorphisms, and
whose �brant objects are the Kan complexes. Moreover, any anodyne
extension is a trivial co�bration, and the �brations between �brant
objects exactly are the Kan �brations between Kan complexes.

De�nition 3.1.9

The structure we get will be called the Kan-Quillen model category
structure.
Its weak equivalences will be called the weak homotopy equivalences.
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Proof.

The theorem 2.4.19, applied to the category of simplicial sets for
∆1 × (−) and for An, gives us the model category structure, where :

the co�brations are the monomorphisms;

weak equivalences are the morphisms f : X → Y such that, for any
�brant presheaf W , f ∗ : [Y ,W ]→ [X ,W ] is bijective;

naive �brations are the morphisms having the right lifting property
with respect to An;

the �brant presheaves X are the ones such that the map from X to
the �nal preashef is a naive �bration.

Then, use proposition 3.1.2 to rewrite An as the smallest saturated class
containing the Λn

k → ∆n.
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Corollary 3.1.10.

The class of weak homotopy equivalences is closed under �nite products.
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Proof.

Equivalent to prove that for any simplicial set Y , the functor
X 7→ X × Y preserves weak equivalences. By corollary 3.1.4 it preserves
anodyne extensions. Then use proposition 2.4.40 to show it preserves
trivial co�brations. As it also preserves co�brations, then it is part of a
Quillen adjunction. And as all simplicial sets are co�brant, then it will
preserve weak equivalences.
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Lemma 3.1.11.

Let C be a category in which a commutative square

A B

C D

j

i

l

k

is given. Assume that the maps j , k , l have retractions r , q, p,
respectively, and that pk = ir . Then this square is absolutely Cartesian.
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Proof.

It is su�cient to check that the square is Cartesian. If
u : X → C , v : X → B are such that ku = lv , then taking
w = ru : X → A leads to kjw = ku and liw = lv (using the retractions),
but k, l are monomorphisms, thus the existence of w . For the unicity, use
the retraction of j : then w = rjw = ru.

X

A B

C D

u

v

j

i

l

k
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Lemma 3.1.11.

Let n ≥ 2 and 0 ≤ i < j ≤ n, the following square is absolutely Cartesian
:

∆n−2 ∆n−1

∆n−1 ∆n

δn−1j−1

δn−1i

δnj

δni
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Recall (theorem 1.1.10) : extension by colimits :
Given a small category D and a locally small category C which has small
colimits, any functor u : D → C can be 'extended' to a functor
u! : D̂ → C, where u! is the left adjoint of the functor of evaluation at u.
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Proposition 3.1.13.

Let C be a small category and A : ∆→ Ĉ a functor. Then the induced
colimit preserving functor A! : sSet → Ĉ preserves monomorphisms if and
only if the map

(A(δ10),A(11)) : A0
∐

A0 → A1 = A!(∆1)

is a monomorphism.

Sketch of proof.

Recall that the class of monomorphisms of simplicial sets is the smallest
saturated class containing the inclusions ∂∆n → ∆n. So it su�ces to
checks these inclusions are sent to monomorphisms. For n = 0 : by
cocontinuity of A!. And for n ≥ 2, they are always sent to a
monomorphism (using last lemma).
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Proposition 3.1.14.

Let A,B : ∆→ C be two functors with values in a model category. We
denote by A! and B! their extensions by colimits, respectively, and we
assume that both of them send monomorphisms to co�brations. If a
natural transformation u : A→ B induces a weak equivalence An → Bn

for all n ≥ 0, then, for any simplicial set X , the map

uX : A!(X )→ B!(X )

is a weak equivalence.
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Proof.

Consider the class of X such that uX is a weak equivalence. By
corollaries 2.3.16, 2.3.16 and 2.3.29, it is saturated by monomorphisms
(ie stable under coproducts, pushouts, countable limits). Moreover it
contains all representable presheaves so we can apply corollary 1.3.10.
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De�nition

A bisimplicial set is a presheaf over the product ∆×∆.

For a bisimplicial set X , we write X ([m], [n]) = Xm,n.

For simplicial sets Y ,Z , we set (Y � Z )m,n = Ym × Zn.

For a bisimplicial set X and a simplicial set K , write XK for the
simplicial set de�ned by :

(XK )m = lim
←

∆n→K

Xm,n

So K 7→ XK is the extension by colimits of the functor ∆→ sSet
sending [n] to X∆n

= ([m] 7→ Xm,n).

For a bisimplicial set X , write diag(X ) for the simplicial set de�ned
by :

diag(X )n = Xn,n
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Theorem 3.1.16.

If a morphism of bisimplicial sets X → Y is a levelwise weak homotopy
equivalence (i.e. induces a weak homotopy equivalence X∆m → Y ∆m

for
all m ≥ 0), then the diagonal map

diag(X )→ diag(Y )

is a weak homotopy equivalence.

Sketch of proof.

Main point : use proposition 3.1.14 and the fact that K 7→ XK is the
extension by colimits of [n] 7→ X∆n

to conclude that XK → Y K is a weak
equivalence for any simplicial set K .
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De�nition

Given a partially ordered set E , write s(E ) for the set of �nite
non-empty totally ordered subsets of E , ordered by inclusion.

We get a functor s from the category of partially ordered sets to the
category of small categories.

Set Sd : sSet → sSet as the extension by colimits of [n] 7→ s([n]).

Its right adjoint Ex is Ex(X )n = Hom(Sd(∆n),X ).

De�nition

an : s([n])→ [n],U 7→ max(U) induces by extension by colimits the
natural transformation aX : Sd(X )→ X .

By transposition we get bX : X → Ex(X ), obtained by composing
the Yoneda isomorphism Xn ' Hom(∆n,X ) with the map
a∗n : Hom(∆n,X )→ Hom(Sd(∆n),X ).
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Proposition 3.1.18.

The functor Sd preserves monomorphisms as well as anodyne extensions.
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Proposition 3.1.19

For any simplicial set X , aX is a weak homotopy equivalence.

Proof.

By proposition 3.1.14, it su�ces to prove that aX is a weak homotopy
equivalence for X = ∆n, n ≥ 0. Use the two-out-of-three property for
weak homotopy equivalences to conclude.
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Lemma 3.1.20

Let f , g : K → L be two morphisms of simplicial sets, such that there
exists a homotopy h : ∆1 × K → L from f to g . Then, for any simplicial
set X , there exists a homotopy from f ∗ to g∗ (precompositions).

Proof.

h induces :

h∗ : Hom(L,X )→ Hom(∆1 × K ,X ) ' Hom(∆1,Hom(K ,X ))

which induces by transposition :

h̃ : ∆1 × Hom(L,X )→ Hom(K ,X )

Proposition 3.1.21

For any simplicial set X , bX is a weak homotopy equivalence.
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The functor Ex∞
The functor π0

De�nition.

For a simplicial set X , we set :

Exn+1 = Ex(Exn(X ))

b induces a sequence :

X → Ex(X )→ Ex2(X )→ . . .

De�ne Ex∞(X ) as its limit.
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Theorem 3.1.29 (Quillen).

A morphism of simplicial sets is a �bration of the Kan-Quillen model
category structure if and only if it is a Kan �bration. A morphism of
simplicial sets is a trivial co�bration of the Kan-Quillen model category
structure if and only if it is an anodyne extension.

36 / 39



Introduction and goal
De�nitions for our structures

First properties
Bisimplicial sets

Partially ordered sets
Teasers

The functor Ex∞
The functor π0

De�nition.

De�ne π0 as the left adjoint of the inclusion functor Set → sSet.

37 / 39



Introduction and goal
De�nitions for our structures

First properties
Bisimplicial sets

Partially ordered sets
Teasers

The functor Ex∞
The functor π0

Proposition 3.1.31.

The functor π0 sends weak homotopy equivalences to bijections and
commutes with �nite products. Furthermore, for any Kan complex X , the
set π0(X ) may be identi�ed with the set of ∆1-homotopy classes of maps
∆0 → X .
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